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Abstract

Through a series of experiments, we have measured the extent to which 3D
visualizations of a variety of lighting conditions in an indoor environment can
accurately convey primary perceptual attributes. Our goal was to build and
rigorously test perceptually accurate visual simulation tooling, which can be
valuable in the design, development, and control of complex digital solid-state
lighting systems. The experiments included assessments of lighting-related perceptual
attributes in a real-world environment and a variety of virtual presentations. Iteratively
improving choices in modeling, light simulation, tonemapping, and display led to a
robust and honest visualization pipeline that provides a perceptual match of the real
world for most perceptual attributes and that is nearly equivalent in perceptual
performance to photography. One persistently difficult attribute is scene brightness,
as observers consistently overestimate the brightness of dimmed scenes in virtual
presentations. In this paper we explain the experimental 3D visualization pipeline
variables that were addressed, the perceptual attributes that were measured, and
the statistical methods that were applied to evaluate our success.
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Background
Human-centered illuminated environments are developed through creative steps,

including optics design, luminaire architecture, lighting design, control system

optimization, and scene authoring, as well as essential communication with clients

and/or suppliers at each stage. All of these steps can become clearer and more con-

crete with a trustworthy visual preview of the resulting light distribution, in the context

of a detailed scene, including the compound effects of multiple light fixtures. Yet, while

3D visualization is ever more common in architectural interior design, it typically

remains an artistic tool to convey impressions rather than a simulation tool to convey

reality. There is a need now for accurate visual simulation tools designed for lighting –

indeed this is true regardless of the lighting technology employed, but it is especially

valuable given the design freedom in terms of form factors and light distribution of-

fered by digitally-controlled solid-state lighting. As designers and users are discovering
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new ways to use flexible light sources, the conceptual value of virtual prototyping be-

comes clear and reliance on simulation and preview will only increase.

The goal of this paper is to summarize research conducted to assemble and evaluate

a 3D visualization pipeline optimized for perceptual accuracy in the presentation of lit

indoor environments. A series of experiments was conducted which show that

properly-prepared virtual, on-screen presentations of rendered 3D visualizations of a lit

environment can result in observers’ assessments of relevant perceptual attributes which

correspond closely to the assessments made of a similar environment in the real world.

Prior work

Computer graphics has made continuous progress in accuracy and efficiency since the

advent in the 1970s of raytracing [1, 2], which essentially simulates the transport and

material interactions of photons or rays of light in a three-dimensional virtual scene.

The concept is simple, but practical reality is slow and memory-intensive, so while for

decades people have understood the problem to be solved – the “rendering equation”

[3] – making usable visualization and rendering systems has typically entailed taking

practical shortcuts with the lighting simulation. Because of this, lighting has historically

been a specialized application of visualization and simulation. RADIANCE [4] for many

years stood alone as a lighting-oriented visual simulation tool, used especially success-

fully for daylighting and fenestration applications. Recently, progress in both processing

speed and algorithm efficiency has made physically-based lighting simulation much

more mainstream, with the software market including a variety of efficient offline ren-

dering software packages (Indigo, V-Ray, Corona, Octane) and real-time graphics en-

gines for gaming and virtual-reality presentations (Unreal, Unity, Brigade) relying on a

mix of rendering algorithms including path tracing and photon mapping. Presently, it

is possible to efficiently, physically simulate lighting in indoor illuminated environments

at a level of quality where concepts of photorealism and perceptual accuracy can be

discussed and measured.

Beyond the physical accuracy of a simulation engine, many other aspects of image

creation and presentation affect a viewer’s perceptual impression of a scene, notably as-

pects of display dynamic range and image tone compression. The real world and accur-

ate simulations thereof typically include many log units of intensity range from the

darkest shadow to the brightest light source or specular reflection. Such scenes are

often described as high dynamic range (HDR). The real world is HDR and the human

visual system is very good at adapting to different intensity levels both within a scene

and over time. However, electronic displays, prints, and other media are unable to fully

show HDR intensity ranges. With these media, compression of image intensities is re-

quired, regardless of whether the image source is general photography or a lighting

simulation. Tonemapping operators (TMOs) are algorithms or systems that accomplish

intensity range compression: some are designed to mimic human adaptation; others

simply behave like camera autoexposure systems.

A number of researchers have assessed the fidelity of virtual representations of real

spaces. Drago and Myszkowski made direct comparisons between a real architectural

interior viewed through an aperture and renderings shown on a display [5]. They found

that the perceived fidelity of photographs was best, nearly approached by renderings

carefully crafted by an artist to match the scene. Realizing the importance of display
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dynamic range, they noted that the limitations in displayed highlight and shadow re-

gions were the weakest aspects of their images. In research published by Villa et al., the

effects of light simulation engine, TMO, and post-processing corrections were studied

using renderings of artificial lighting in interior scenes [6, 7]. Overall they found a good

match between real and virtual scenes, though they observed that TMO had a strong

effect on the perceived realism of displayed images. Recently, Schielke measured good

correlations between real and virtual scenes for brand image studies that included

visual characteristics spanning lighting (brightness, uniformity, etc.) and marketing

(price, style, attractiveness, etc.). His paper does not emphasize the details of image

preparation and tonemapping, but apparently he excluded high-luminance light sources

and specular reflections in the presentations while using relatively low-luminance pro-

jection and web-based uncalibrated displays [8]. Other authors have conducted visual

simulation-based lighting research. Newsham et al. used a simulated office space in an

experiment that employed a genetic algorithm to optimize the attractiveness of the

luminance distribution on scene surfaces [9].

We have undertaken an in-depth study of the effects of relevant simulation cre-

ation and image presentation variables on perceptual accuracy, comparing percep-

tual results acquired in a real environment with those acquired using virtual

environments. Some parts of this corpus have been presented previously [10–13].

The present paper brings this whole set of experiments together with new insights

and includes a meta-analysis of the importance of all 3D visualization pipeline vari-

ables studied. It is a detailed extension of the summary presented at the SID/IES

Special Lighting Track, SID 2015 [14].

Methods
The methods employed in this research included direct assessment of perceptual attri-

butes of artificially illuminated indoor scenes, both real-world baseline environments

and rendered virtual presentations. Through a series of experiments using virtual pre-

sentations, key components of a 3D visualization pipeline were varied in order to deter-

mine their influence on perceptual accuracy – the similarity between the perception of

the virtual stimuli and the real-world stimuli – in order to create an optimal pipeline.

The perceptual attributes of interest, the procedures for the real-world and virtual experi-

ments, the creation of virtual stimuli, and the statistical methods are described below.

Perceptual attributes

There are many perceptual attributes that are relevant to lighting research. Of primary

interest to us are those such as brightness and uniformity, which relate closely to phys-

ical quantities, and atmosphere metrics such as coziness and tenseness, which are

affective evaluations of an environment that are strongly influenced by lighting changes.

Atmosphere terms and assessments were originally outlined by Vogels [15], and their

relationship to lighting characteristics were studied by Vogels, Seuntiens, and others

[16, 17]. Other, secondary perceptual attributes relevant to lighting may include color

rendition, glare, and appropriateness for a task or space, but these were considered out

of scope for this stage of research.

In the present experiments, ten primary perceptual attributes were studied: Overall

Pleasantness, Overall Brightness, Overall Diffuseness, Contrast, Uniformity, Shadow
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Visibility, Coziness, Liveliness, Tenseness, and Detachment (Businesslike). This set of

attributes can be thought of as three distinct groups. One is overall impressions –

Pleasantness and Brightness; a second is perceived atmosphere – Coziness, Liveliness,

Tenseness, and Detachment – terms that Vogels found to be orthogonal descriptors

via factor analysis. The third group has to do with the uniformity of light distribution –

Diffuseness, Contrast, Uniformity, and Shadow Visibility. These distribution attributes

presumably correlate to some extent, but without enough a priori knowledge to select a

representative single term or subset they were all used. Our assertion is that if observers’

responses to these perceptual attributes in virtual presentations match those in analogous

real-world environments, then we have accomplished perceptual accuracy. Our research

track has focused on quantifying how the perceptual accuracy is affected by the choices

made in the creation and presentation of visualizations of lighting scenes.

Baseline real-world experiment

A baseline experiment was conducted in a real-world artificially illuminated environ-

ment in order to uncover ground truth lighting perception data over a range of lighting

conditions. The real environment employed was our Light Lab, which is an otherwise-

typical office room with a flexible, computer-controlled lighting system including

60x60cm variable color temperature fluorescent luminaires, halogen spot lights ori-

ented as downlights, halogen and RGB LED spot lights oriented toward one wall, and

RGB LED grazing luminaires at the bottom of the opposing wall. A plan view of the

Light Lab can be seen in Fig. 1. For our series of experiments, we defined 15 distinct

lighting conditions using different groupings of fluorescent lights and two groups of

halogen lights, downlights (large spots) and wall-oriented spotlights (small spots), at

different intensity levels, details of which are given in Table 1. A representative subset

of these conditions is shown in the rendered images in Fig. 2.

In the baseline experiment, 28 observers viewed all 15 lighting conditions in random

order from a seated position near one wall. Actually, the experiment was run in two

separate events, with 12 and 16 observers in each. We found no statistical differences

between these populations so the data are combined as if done in a single experiment.

Using a MATLAB GUI questionnaire on a laptop screen, observers were asked to as-

sess the ten perceptual attributes. The questionnaire said “Please rate the scene on the

Fig. 1 Light Lab layout. This top-view of the Light Lab shows the locations of 6 fluorescent luminaires,
6 large spotlights/downlights, and 6 small wall-oriented spotlights. The observer sat at the right end of the
room facing the table and door

Murdoch et al. Journal of Solid State Lighting  (2015) 2:12 Page 4 of 19



following aspects:” then listed each perceptual attribute alongside a 7-point scale using

radio buttons. The leftmost button was labeled “Low,” the middle button “Neutral,”

and the rightmost button “High.” Mean opinion scores (MOS) for each of the ten per-

ceptual attributes over each of the 15 light conditions are illustrated in Fig. 3. Rather

than to try to explain the trends visible, this data-rich figure is provided simply to illus-

trate that this set of relatively simple light conditions indeed provides a strong effect on

all of the perceptual attributes being measured (in fact light condition has a significant

effect on every attribute according to analysis of variance (ANOVA) results). The MOS

Table 1 Light Lab conditions

Luminaire intensity (%)

Category Condition Color temp F1 F2 F3 F4 F5 F6 Sm. spot Lg. spot

Warm 1 2700K - - 100 100 - - - -

2 100 - - 100 100 - - -

3 100 100 - - 100 100 - -

4 100 100 100 100 100 100 - -

Cool 5 6500K - - 100 100 - - - -

6 100 - - 100 100 - - -

7 100 100 - - 100 100 - -

8 100 100 100 100 100 100 - -

Dimmed 9 2700K 50 50 50 50 50 50 - -

10 5 5 5 5 5 5 - -

11 6500K 50 50 50 50 50 50 - -

12 5 5 5 5 5 5 - -

Spots 13 3000K - - - - - - 100 -

14 - - - - - - - 100

15 - - - - - - - 5

Luminaire color temperature and intensity settings for the 15 light conditions which fit into categories of warm, cool,
dimmed, and spot. Light fixtures used are the variable color temperature fluorescent fixtures (F1-F6), wall-oriented
halogen spotlights (Sm. spots), and halogen downlights (Lg. spots)

Fig. 2 Light Lab images. Shown are rendered images of six of the fifteen light conditions. Top row, L-R are
conditions 8 (6 cool 100 %), 4 (6 warm 100 %), 14 (large spots 100 %); bottom row, L-R are 5 (2 cool), 13
(small spots), and 15 (large spots 5 %)
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illustrated comprise the ground truth that we aim to match with virtual presentations

created through our 3D visualization pipeline.

Virtual presentation experiments

The baseline experiment was followed by a series of experiments that mimicked the

baseline experiment but used only virtual stimuli – rendered visualizations of the Light

Lab in the various lighting conditions presented on displays. In all of the virtual experi-

ments, observers viewed randomized, displayed images of the virtual Light Lab and

used the same second-screen MATLAB GUI that was used in the baseline experiment,

thus making assessments of each of the perceptual attributes on a 7-point scale. Each

separate experiment included about 20 observers who each assessed either 45 or 60

image stimuli: the same 15 lighting conditions through three or four different presenta-

tions. Our 3D visualization pipeline, explained in the following section, was tested in

parts over time, not with a full-factorial experimental design, resulting in iterative im-

provements along the way. Full details of the presentations, observers, etc., are ex-

plained below and summarized in Table 2.

3D visualization pipeline

The series of steps used in creating 3D visualizations, or renderings, can be thought of

as a production or graphics pipeline, as shown in Fig. 4. In the first block of our 3D

visualization pipeline, a scene is created including models of its geometric, material,

and lighting system characteristics. Geometry may originate from an architectural

drawing or 3D model, be inferred from a laser scan of a real space, or be manually built

up from graphics primitives. Material models include a model of the bi-directional re-

flectance distribution function (BRDF) of surfaces in the scene, generally with texture

Fig. 3 Baseline MOS. Ten separate plots are shown, each showing the mean opinion scores (MOS) over all
28 observers versus lighting condition for each perceptual attribute in the real-room baseline experiment,
shown with 95 % confidence intervals. Shaded regions indicate condition categories: warm (conditions 1–4),
cool (5–8), dimmed (9–12), and spots (13–15)
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and bump maps, which may be taken from available libraries or captured with photog-

raphy and reflectance measurements. Lighting details include models of the geometry,

technology, light distribution, color, and control limitations of light sources in the

scene, where light distribution can be specified via measured photometry or simulated

by including optical elements in the geometric model. The formats and limitations of

material and lighting models are necessarily linked to the renderer in the next block.

Table 2 Virtual presentations

Presentation Experiment N observers Model Renderer TMO Display View

A 1 25 Orig Ind Rein Ph42 Static

B iCAM

C LT Rein

D iCAM

E 2 24 Orig Ind Rein Ph42 Static

F Rein 3D

G Rein HB

H Lin HB

I 3* 16 Orig Ind Rein Ph42 Static

J 4 17 Orig Ind Rein

NEC46 StaticK Photo - -

L 5 12 Update Ind Rein NEC46 Static

M 6 24** Update Ind Rein2 Laptop Static

N Pano

O NEC46 Static

P Pano

Q Proj Static

R Pano

S 7 19 Update Ind Rein2 NEC46 Static

T V-Ray V-Ray Rein2 NEC46 Static

Each row represents a different virtual presentation (letter codes), each of which is a combination of 3D visualization
pipeline components including model, renderer, TMO, display, and view. Also noted are the experimental groupings and
number of observers for each presentation
*Experiment 3 also included within-subject assessment of the real-world environment
**24 total observers, but with balanced incomplete block design, each of 6 presentations was viewed by 16 observers

Fig. 4 3D visualization pipeline. This flow diagram is a framework for describing the steps involved in
creating and using rendered visual simulations of lighting environments. A scene is created by describing its
geometric, material, and lighting system characteristics; a rendering engine models light transport in the scene
and a virtual camera and TMO result in an image; the image is reproduced on a display or print;
then it is viewed in a specific viewing condition for a specific purpose
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In the Renderer block, the scene is rendered, in the computer graphics sense, by a

rendering engine that simulates physical light transport in the scene and results in a

high-dynamic range (HDR) simulation of the scene from the viewpoint of a virtual

camera. The third block, Tonemapper, executes rendering in the photographic sense,

where a tonemapping operator (TMO) renders the scene-referred image into a display-

able image by compressing and limiting the dynamic range of scene intensities. In the

Display block, the image is reproduced on a specific display, including display-specific

image processing and color management, and finally in the View block, the

visualization is presented to human eyes in a specific viewing condition for a specific

purpose. Differences in purpose may conceptually lead to different requirements for

perceptual accuracy: for two examples, using a calibrated display in a controlled lab for

visual threshold testing of uniformity differences, or using a conference room projector

for an optics design review. We undertook the goal to understand how choices of com-

ponents in each step of the 3D visualization pipeline affect the perceptual accuracy of

the resulting images.

Pipeline variations

In the following subsections, the experimental variations are presented in relation to the

visualization pipeline, rather than as a chronology of experiments. All of the presentations,

main variables, experiment numbers (chronological numbers), and numbers of partici-

pants are listed in the following Table 2. Parenthetical abbreviations are explained in the

following subsections and are consistently used in the results tables following.

Most experiments discussed herein were approved by the Internal Committee for

Biomedical Experiments (ICBE) of Philips Research, though a few early studies predate

the ICBE’s involvement in non-medical studies. In every case, observers were given an

informed consent sheet explaining their task, summarizing the research goals, promis-

ing confidentiality of their personal information, and clarifying that they were free to

leave the test at any time. Observers were all employees (including student interns) of

Philips Research, and none were lighting experts. They were all tested for normal color

and spatial vision. There were a few observers who participated in more than one ex-

periment, but in general there was not much overlap. Thus, we treated all intra-

experiment presentations as within-observer, and all inter-experiment presentations as

between-observer in our analyses.

Scene, renderer, and photograph

An obvious starting point is in the 3D scene model itself, and a comparison between

renderings and photographs of the real-world scene. The 3D scene and the simulation

of light transport within carry huge leverage over the later pipeline components. Sev-

eral of our experimental variations included changes in the 3D model and the selection

of light simulation rendering engine. In one experiment (see [11]) we included photo-

graphs of the 15 lighting conditions as a variation (Photo), with the hypothesis that a

photo of the real situation would provide an upper limit to the accuracy attainable via

synthetic renderings. Photographs were taken at a fixed exposure setting, but manually

adjusted in final brightness as discussed in the following section Tonemapper.

The model of the Light Lab was built and improved over time. An early experiment,

described in [10], included the original 3D scene model (Orig), built manually based on

Murdoch et al. Journal of Solid State Lighting  (2015) 2:12 Page 8 of 19



physical measurements made in the real Light Lab. This experiment included a

comparison of two renderers: LightTools (LT), an optics design and simulation

package, and Indigo Renderer (Ind), a path-tracing-based general-purpose rendering

engine. For both we kept the scene materials as simple as possible, with diffuse

Lambertian wall materials and semi-gloss painted elements modeled with Phong

BRDF models. Texture maps used for the carpet, wall sign, tabletop, and ceiling

tile models were created from photographs of real scene elements. A later variation

involved the scene model ported to V-Ray renderer, a highly-efficient general-

purpose engine popular in architectural visualization among other applications, to

test if its high computational efficiency comes at an accuracy cost relative to the

strictly physically-based path-tracing approach of Indigo.

In all renderings, the fluorescent luminaires’ light distribution was modeled using

measured goniometry in IES format, despite the IES model assuming a point

source and our scene clearly including a 60 × 60 cm extended source. We accepted

this discrepancy because any error it would cause would be primarily on objects

very close to the light sources, and we have none. In the LT and Ind renderings,

the spot lights’ distributions were modeled by simulating, or ray-tracing, the re-

flective luminaire optics in the rendering, while in V-Ray these were also modeled

using IES data. In some later experiments, updates of the model’s luminaires and

wall reflectance values were made based on improved measurements of scene re-

flectances, and the carpet was replaced (with one similar in lightness but with a

different pattern) both in the real lab and virtual model (Update) (see [11]).

Tonemapper

The tonemapping operator (TMO) is a critical element which compresses the tonal

range of an inherently HDR render output to a displayable image. We selected two

TMOs from literature to use in our research and created a third. One is the TMO of

Reinhard et al. (Rein) [18], which we found very robust and flexible in early testing, and

which Villa [7] also concluded was a particularly good performer. Based on the photo-

graphic techniques of American photographer Ansel Adams, it provides an adjustable

key parameter for overall image intensity, much like a camera exposure compensation

control. The TMO employs logarithmic tone compression, which is similar to the

power-law “gamma” compression familiar in photographic systems for lower exposure

values but more aggressively compressive at higher exposure values. This allows a very

wide dynamic range to be compressed, which keeps highlights from clipping but occa-

sionally results in noticeably low-contrast highlights. We found the Reinhard TMO’s

key parameter always required separate manual adjustments for each lighting condition,

despite our testing of the methods described in Reinhard’s own addendum to automate

it [19]. In the creation of experiment stimuli, we accomplished this visually, walking

from the real-world Light Lab to the display lab and choosing the key parameter level

that matched best in our opinion. For the last two experiments updates in the Reinhard

TMO key parameter settings were made based on our observations that dimmed lighting

conditions were over-estimated in brightness (Rein2).

The second TMO – iCAM06 (iCAM), presented by Kuang, Johnson, and Fairchild –

uses a perceptual approach, accounting for visual adaptation through image color
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appearance modeling [20]. Its success in adapting to both the luminance level and the

chromaticity of the virtual scene also turned out to be its weakness for our application, as

described later in the Discussion. Additionally we employed simple linear reproduction,

basically a scale factor applied to scene luminance values, as a TMO in one unique high-

brightness display presentation (Lin). An experiment that employed Rein and iCAM was

described in [9], and the Lin TMO was used in the experiment presented in [10].

Related to tonemapping, we did adjust the overall image intensity of the photographs,

using the Brightness modifier in Adobe Lightroom, to match the intensity of the corre-

sponding Reinhard-tonemapped renderings. Thus both the tonemapped renderings and

the brightness-adjusted photographs were manually made to visually match the corre-

sponding real world lighting conditions, according to the authors’ consensus.

Display type and size

Several types and sizes of displays were used in the experiments, all viewed in a display

lab with dimmed indirect lighting on the wall behind the display and no direct light on

the display surface. Most of the variations involved one of two 1920×1080 TV-sized

LCDs: a 42-inch Philips 42PFL9703 with a peak white of 230 cd/m2 (Ph42) and a

46-inch NEC P462 with peak of 278 cd/m2 (NEC46), a commercial display with ro-

bust calibration options. One or both of these displays was used in every experi-

ment. In all cases, displays were thoroughly measured and images were processed

separately for each display to account for its specific tone and color characteristics,

resulting in device-specific RGB images used in the experiments.

In some variations, advanced displays were employed, such as a 47-in. 3D stereo

passive-polarized LCD TV (a prototype similar to Philips 47PFL7696) of 397 cd/m2

without polarized glasses (3D), and a 42-inch high-brightness VHBLCD display of

1800 cd/m2 (HB). In a later experiment (Experiment 6 in Table 2) exploring image size,

a small-screen HP 8460p laptop with 14-inch 1366×768 LCD with peak white of

217 cd/m2 (Laptop) and a large 138-inch diagonal projection from a Sanyo PLC-

ZM5000L 3-LCD projector with 1920×1200 pixels and a peak white of 180 cd/m2

(Proj) were used. Further detail on this experiment can be found in [12].

Field of view and interactivity

Presentation was varied in field of view (FOV) and interactivity. The FOV is the width

in degrees of a displayed image from the point of view of the observer. Perfect perspec-

tive is attained when the FOV of the [virtual] camera matches the FOV of the display

from the viewer’s position. In most of our experiments, we employed static images with

a camera FOV slightly wider than our displayed FOV (Static), which means each image

looks noticeably “wide-angle” with converging lines and exaggerated depth. We chose

this imperfection because matched FOV was possible only with tradeoffs: either by sit-

ting very close to the 46-inch display, which had the side-effect of making its pixels vis-

ible, or by narrowing the FOV of the camera, which meant that the ceiling in the Light

Lab was not visible on the screen – hardly appropriate for evaluating lighting settings.

Because in the real room baseline experiment the observer was free to look around

the room with his or her head from the fixed, seated viewing position, we adopted a

similar viewing mode in some presentations. Starting with a cube-map (six cube-face

renderings from a single viewpoint covering the full spherical view) panoramic
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rendering of the room, an interactive viewing mode was implemented which allowed

the observer to look around the room, keeping a natural FOV and mimicking the head

movement which was possible in the real room (Pano). This can be thought of as an

intermediate between a static view of a scene and a walk-through, where the latter

would require a real-time graphics engine to render new viewpoints as needed. Our

Pano presentation takes advantage of the quality of offline rendering but still gives the

observer some freedom to look around. Details of the experiment with FOV and inter-

active panorama viewing are described in [12].

Statistical analysis

Analyses were performed within each experiment to uncover the effects of the variables

under study, some aspects of which were presented in earlier papers, but they do not

easily assess accuracy across experiments. In this paper we present a meta-analysis that

was performed over all experiments to assess the perceptual accuracy of all virtual pre-

sentations. The meta-analysis employed linear mixed models (LMM) [21], a mean com-

parison statistical hypothesis test similar to analysis of variance (ANOVA) but which

uses maximum likelihood rather than least-squares fitting and which is robust to our

combination of mixed between- and within-subject and incomplete designs. LMM pro-

vides an estimate of statistical significance for multiple independent variables’ effects

on a single dependent variable. Thus, separate LMMs were computed using SPSS soft-

ware for each perceptual attribute with a model including lighting condition and virtual

presentation as fixed factors and observer as a random factor. In all analyses we set our

significance level to 0.05. Our goal remains to draw a conclusion about a match be-

tween the perception of the real environment and the virtual presentations, and we

realize that both LMM and ANOVA are not completely suitable for this – they provide

evidence by which a null hypothesis (that is, the assertion that there is no difference)

can be rejected, but they do not specifically prove that a null hypothesis is true.

With this in mind, we additionally look at Cohen’s d effect size to assess the relative

magnitude of the differences observed [22]. Cohen’s d effect size is calculated by divid-

ing the mean difference of two conditions by the standard deviation (STD). Rules of

thumb show that an effect size of 0.2 is considered to be small, an effect size of 0.5 to

be moderate, and an effect size > 0.8 is large. Corresponding to a small Cohen’s d effect

size, we calculated a threshold in DMOS by multiplying 0.2 by the average STD over

all attributes and light conditions in the baseline experiment. We then define a match

as the combination of no significant difference according to the LMM and a DMOS

difference smaller than our Cohen’s d-based threshold.

Results and discussion
The results from each experimental pipeline variation included in the experiments were

aggregated and analyzed using LMM. Note that for the LMMs we merged the data

from repeated presentations of the same pipeline variations: specifically the group A, E

and I and the pair O and S. Statistical analyses on the pre-merged presentations re-

vealed very few differences, a single significantly different attribute in each case. We

judged this as representing random, rather than structural variation, and treated the

merged data sets as if they originated from single experimental presentations.
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Table 3 Results overview

Marginal mean difference with baseline

Presentation Model Renderer TMO Display View Pleasantness Brightness Diffuseness Contrast Uniformity ShadowVis Coziness Liveliness Tenseness Detachment Avg. Abs.

C Orig LT Rein Ph42 Static 1.04 0.20 −0.13 1.18 0.08 1.55 0.57 0.50 0.02 0.78 0.61

D Orig LT iCAM Ph42 Static 1.14 −0.19 0.10 0.38 0.29 0.89 0.69 0.43 −0.19 0.73 0.50

B Orig Ind iCAM Ph42 Static −0.22 0.39 0.41 0.85 0.57 −0.76 −0.02 −0.38 −0.36 −0.48 0.44

G Orig Ind Rein HB Static 0.30 −1.18 −0.03 0.37 0.12 0.09 0.07 −0.36 −0.32 −0.71 0.35

J Orig Ind Rein NEC46 Static 0.57 −0.36 0.07 −0.18 0.28 −0.11 0.56 0.22 −0.43 −0.56 0.33

L Update Ind Rein NEC46 Static 0.16 −0.59 −0.26 −0.29 0.15 −0.41 0.07 −0.13 −0.42 −0.66 0.31

H Orig Ind Lin HB Static 0.21 0.11 0.47 −0.24 0.85 −0.08 0.06 0.11 −0.27 0.09 0.25

A,E,I Orig Ind Rein Ph42 Static −0.16 −0.32 0.20 0.31 0.38 −0.12 −0.07 −0.21 −0.12 −0.34 0.22

Q Update Ind Rein2 Proj Static 0.23 −0.52 −0.10 0.13 0.21 −0.14 0.39 0.08 0.12 −0.37 0.23

R Update Ind Rein2 Proj Pano 0.16 −0.76 −0.23 0.30 0.22 0.02 0.21 −0.07 −0.13 −0.09 0.22

O,S Update Ind Rein2 NEC46 Static 0.11 −0.49 −0.03 −0.14 0.29 0.36 0.25 −0.17 0.09 −0.23 0.22

N Update Ind Rein2 Laptop Pano 0.20 −0.48 0.15 −0.10 0.36 −0.01 0.19 −0.18 −0.28 −0.12 0.21

T V-Ray V-Ray Rein2 NEC46 Static 0.07 −0.43 −0.09 −0.24 0.21 −0.29 0.30 −0.09 0.00 −0.36 0.21

M Update Ind Rein2 Laptop Static 0.01 −0.39 0.22 −0.07 0.36 −0.16 0.19 −0.13 0.10 −0.14 0.18

F Orig Ind Rein 3D Static −0.14 −0.17 0.19 −0.16 0.34 −0.10 −0.04 −0.05 −0.11 −0.35 0.16

P Update Ind Rein2 NEC46 Pano −0.03 −0.64 0.00 0.05 0.22 0.02 0.09 −0.37 −0.04 −0.16 0.16

K Photo - - NEC46 Static 0.02 −0.33 −0.19 −0.07 0.19 0.21 0.03 −0.06 −0.04 −0.24 0.14

Columns in the table correspond to the ten perceptual attributes studied, while rows refer to different virtual presentations (abbreviations are noted in the text). Numbers in the cells are the marginal mean difference
between the baseline experiment and the virtual presentation, colored to indicate significant differences according to the LMM (red), and non-significant differences (green). The final column is the average of all
attributes’ absolute mean difference per virtual presentation (average of absolute values in each row), and provides the sort order for the table (largest to smallest difference)
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The results given in Table 3 outline marginal mean differences (on a 1–7 scale) be-

tween the baseline experiment and each virtual presentation for each of the ten per-

ceptual attributes, after accounting for the modeled LMM factors. Shaded cells

indicate situations in which the LMM analysis found a significant difference (p < 0.05)

between real and virtual, unshaded indicates no significant difference. Table rows are

sorted in order of decreasing average absolute mean difference, so worst-to-best by

that measure.

It is immediately clear from the uneven distribution of shaded cells in the table

that some variations (rows) perform much better than others, showing the impact

of the pipeline variables under study. The worst variations are those rendered with

LightTools (C, D), which were poorer in visual quality, as well as those using the

iCAM TMO (B, D), which performs complete chromatic adaptation and thereby

masks the color temperature changes in the scene. While the table is not in

chronological order, the alphabetic order of our presentations over time exposes

the trend that we have progressed from more to fewer significant differences over

time. The table also shows that some attributes (columns) are apparently more dif-

ficult than others: for example, the Brightness column indicates significant differ-

ences in more variations than all other attributes, while the Diffuseness column

shows differences in the least number of variations. Based on observed significant

differences, high-level attributes such as Pleasantness and Coziness seem to be

slightly better conveyed than physical attributes such as Brightness and Uniformity.

Arguably the best, the photograph presentation (K) has the smallest number of sig-

nificant differences, only for Brightness, and also has the smallest average mean differ-

ence. The best-case virtual presentation was created with a pipeline of an accurate and

updated scene model, Reinhard TMO, calibrated TV-size display and panoramic view

(P). Hence, for these two presentations it is interesting to look more closely at the indi-

vidual light conditions. Figure 5 therefore graphically depicts the difference in mean

opinion scores (DMOS) with the real space for the presentations K and P per attribute

Fig. 5 Cohen’s d comparison. Difference in mean opinion score (DMOS) for presentations P (Pano), O (Static),
and K (Photo) as compared to the baseline. Red lines indicate the DMOS threshold corresponding to a small
Cohen’s d effect size
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and condition. Additionally, in order to systematically verify the added value of the

panoramic view, we also included the static version of this best-case visualization (O).

We do not include some other good performers such as the 3D display (F) and the

laptop-based static presentation (M), simply to keep the figures and discussion manage-

able. On the figure, the red lines indicate a mean difference of +/−0.25 on a 7-point

scale, the threshold computed for what can be considered a small Cohen’s d effect size.

The asterisks above the bars indicate a significant difference between each presentation

and the real space, and the asterisks below the bars indicate a significant difference be-

tween the photos and the static visualizations.

Looking first at which cases have the fewest LMM-based significant differences,

photo appears best, with only 36 out of 150 comparisons different. Pano follows with

40, and static with 52. Since, as stated in section Statistical Analysis, lack of significance

does not indicate that there is a match for the remaining conditions, we look at which

cases have the most DMOS bars within the boundaries of small Cohen’s d effect size.

From this perspective, static is the best with 51 matches, followed by photo with 49

and pano with 34. Overall, these numbers showed that although two-thirds or more of

the comparisons were not significantly different from the real space, roughly only one-

third of the differences were small enough to be considered a match according to our

Cohen’s d small effect size threshold. Looking closely at Fig. 5, it is apparent that some

lighting conditions match better than others. For many attributes the mean differences

seem to be especially large for the dimmed light conditions (9–12) compared to the rest

of the conditions.

Comparing these three presentations, photo can still be considered the best, with the

fewest significant differences and almost as many matches as static visualization. Static

conflictingly has both the most matches and the most significant differences, and pano

simultaneously has the fewest matches and the fewest significant differences. Compar-

ing static and pano, despite pano’s good performance in Table 3, the Cohen’s d conclu-

sion is that static matches more conditions, especially for some attributes, notably

Coziness. It is hard to conclude that there is value added by the look-around capability

of the panoramic view.

Additionally, it is clear from Fig. 5 that the perceptual evaluations of the photographs

behave similarly to both virtual variations. Looking specifically at the static case, while

the LMM results show significant differences from the real space, they differ from the

photographs in only 19 out of 150 comparisons. Hence, despite having differences with

the real space, the static visualizations are nearly equivalent to the photographs.

In addition to the best panoramic (P) and the best static (O) virtual presentations in

Table 3 there lie some other interesting variants worth looking at. The 3D presentation

(F) performed well even without the model and TMO updates that helped in other

cases, so it should be pursued further. The laptop (M,N in static and pano, respectively)

presentations’ performance shows that a small screen is not an obstacle to good per-

ceptual presentation, a useful fact for portability, and the good performance of the

V-Ray (T) presentation is a boon for rendering efficiency, with our admonition that

getting good results with V-Ray requires some parameter fiddling. Going forward,

it appears that visualization pipelines resulting in static or panoramic presentations

using either Indigo (M,N,O,P) or V-Ray (T) renderers will provide robust results

on TV-sized (O,P) or laptop-sized (M,N) displays. The additional expense (in terms
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of rendering time) of panoramic presentation may not be justified by the minimal

gain in accuracy it seems to provide. 3D (F) is worth studying further with the

caveat that it requires a specialized display.

Major effects of pipeline components

A basic question to address in this work is which pipeline elements have the stron-

gest effect on the desired outcome of perceptual accuracy. This cannot be explicitly

determined with the variable level choices and incomplete design, but indeed we

have gained great insight into what is important. One way to look at it is that the

weakest link limits the whole pipeline, somewhat analogously to how the worst

component of an imaging system limits overall image quality. The physical simula-

tion, including the models of the scene and light distribution, has an obvious effect

on realism and affects not only scene accuracy (for example luminaires of the

wrong shape or with incorrect light distribution), but also the intensity and contrast of

the final image. We attempted to separate these effects – those of modeling versus those

of presentation – by using photographs in one of our experimental presentations (straight

photos, but nonetheless photos which included manual choices in overall intensity), and

in so doing we verified that a photograph may indeed be considered nearly as good as

ground truth.

If we focus on the presentation, the most critical factor is tonemapping, which is

there to account for the dynamic range limitations of displays and affects everything

from the intensity and contrast of the image to the sharpness of details. It also deter-

mines image intensity and color bias in terms of exposure and white balance, which are

analogous to visual adaptation and thus are often intentionally partially corrected.

Looking at the perceptual attributes, brightness remains the most difficult to convey

properly, despite its seemingly basic nature. This is presumably due in large part to the

luminance adaptation capabilities of the human visual system, but it may also be cogni-

tive. The brightness of some dim scenes is consistently overestimated. In discussion

with experiment participants and experts, it seems that a low-intensity image may be

interpreted as an underexposed image of a normally-lit room rather than a properly-

exposed image of a dim room (see Fig. 6). However, a bedroom might be more likely to

be interpreted as dimly-lit than an office, based on experience in the real world. In

Fig. 6 Low-intensity image. Is this an underexposed image of a normally-lit room or a properly exposed
image of a dim room?
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ongoing experiments we are further probing the perception of brightness as a function

of image intensity, scene context, and presentation viewing conditions.

Display also has an important but not dominating effect on perceptual accuracy, at

least with the range of displays we have available today. Imagining an ideal display for

our purposes, a first wish would be for high brightness and high dynamic range (specif-

ically, HDR with no spatial limitation, compared to what is typical today), which would

likely obviate the TMO. We found with a high brightness display that linear tonemap-

ping appears to perform better than the Reinhard TMO for relatively low-contrast

scenes, but the display’s dynamic range limitations prevented us from using it for gen-

eral application. An ideal display might have luminance levels sufficient to create retinal

afterimages and intra-ocular glare just as a real luminaire naturally would. Looking at a

bare LED of a million cd/m2 leaves a visual impression that cannot be matched with to-

day’s displays, thus using simulations to judge visual comfort or glare remains out of

reach. As an aside, we have experimented separately with modeled glare added synthet-

ically to renderings and found that it does to some extent correlate with increased ap-

parent brightness, but it never affects comfort or creates afterimages like increased

physical intensity would. This remains an avenue for future research.

Secondary to HDR, an ideal display would also incorporate 3D stereoscopic full field

of view for immersive interaction, hopefully less obtrusively than a head-mounted dis-

play, and a capable low latency real-time graphics engine behind it. Our 3D display

presentation performed quite well even with a simpler scene model, and we would in

the future explore the apparent advantage of stereoscopic presentation. Recent gaming

engines are rapidly getting good enough to do accurate physical simulation of lighting

systems, and mobile stereoscopic head-mounted displays are developing quickly. We

have made first tests with such systems and believe they hold great potential. Once the

human interface becomes transparent and intuitive, this kind of display system will

flourish, and they will be very valuable for architectural lighting previews.

Critique of meta-analysis

As we mentioned in the Statistical Analysis section, our null hypothesis is that there is

no difference between virtual presentations and the baseline real-world experiment.

This could be considered worrisome because type-II error (false negative) is a favorable

outcome for us, as it would seem to support our goal of a perceptual match between

virtual and real. The real risk is that we might miss significant differences because we

have too few observations or a sloppy experimental practice. It was with this in mind

that we adopted the Cohen’s d analysis.

Another way of looking at this problem might be a methods-comparison approach,

as applied in daylight simulation research by Moscoso et al. [23]. They describe the ap-

plication of the Bland-Altman method to find limits of agreement (LoA) [24]. At first

this sounds promising, but in fact this method requires manually choosing a priori a

mean difference threshold, essentially defining the size of a mean difference deemed im-

portant. In their work, Moscoso et al. chose a threshold of 1 unit on a 7-point scale, a

threshold that would make all but 5 of our observed significant differences disappear, pro-

viding a very optimistic result. Picking arbitrarily we might have chosen a threshold of 0.5

units on the 7-point scale.
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Any threshold is of course related to the size of the effects found, and we can con-

clude that even if we have missed something in the real vs. virtual comparison, it would

be much smaller than the observed effect of lighting condition. Stepping back to the

LMM results in Table 3, we observe that the largest non-significant mean differences in

all the LMMs is 0.42 units out of the 7-point scale, indicating that any missed effect is

likely smaller than 0.42 out of 7 points. This is quite small compared to the range of re-

sponses affected by the lighting conditions, as seen in Fig. 1, with observed ranges from

1 or 2 units for some perceptual characteristics up to about 6 for the most extreme

(and note that for all perceptual attributes, lighting condition was found to be signifi-

cant in our LMM analyses).

Future development

Future work could address a few points where our approach is not fully comprehensive.

The presentation of brightness differences remains tricky and relies on manually

chosen parameters in the Rein TMO. We have extensive experience in choosing these

parameters, including a published study of how they may be influenced by the viewing

environment [25], but we would certainly prefer a reliable objective way to set them.

Our ongoing research continues to address brightness perception, for example in one

experiment that directly compares perceived brightness matches between a physical lu-

minaire and a displayed virtual luminaire, considering the limited display luminance,

TMO parameters, and synthetic glare. In another recent experiment we considered an

indoor environment additionally lit by both a wider range of artificial light and daylight,

which of course increases scene luminance levels, where we found small but significant

differences between real and virtual for Brightness as well as a few other attributes [13].

As advanced display technology and real-time graphics engines continue to develop,

our 3D visualization pipeline may need to be tweaked to take full advantage of new

capabilities. Positive improvements could be expected from virtual reality (VR), which

could potentially improve adaptation effects through immersion and extreme FOV be-

yond the good performance we saw with a static 3D and panoramic presentations, and

HDR displays, which will drastically increase the available display dynamic range and,

as we expect based on our experience with a high-brightness (but not high dynamic

range) display, simplify the TMO greatly.

Further research on additional perceptual attributes relative to lighting would also be

welcome progress. Important aspects such as color rendering, spectral engineering, and

glare have not been addressed, but they could be, especially with advanced displays, by

following our methodology of proving perceptual accuracy.

Conclusions
Through this body of work, our goal was to build, test, and improve a perceptually ac-

curate visualization pipeline for simulated images of lighting systems in context.

Through a series of experiments, we have shown that we can create visualizations of lit

environments that are practically as good as photographs in terms of accuracy for pri-

mary perceptual attributes, with very small differences in perceptual attributes as com-

pared to a real-world environment. The most important factors influencing accuracy

are the models behind the simulation, the tonemapping operator, and the display

Murdoch et al. Journal of Solid State Lighting  (2015) 2:12 Page 17 of 19



presentation. Display technology limitations mean some attributes such as glare and

immersive field of view cannot be properly conveyed, but with our visualization pipe-

line physical lighting characteristics of a scene are generally conveyed well and higher-

level attributes such as atmosphere are conveyed very accurately with some exceptions

for dimmed lighting conditions. In general, Brightness remains a difficult attribute to

convey accurately, due in part to the ambiguity of dimmed scenes and in part to the

ability of the human visual system to adapt to different levels of scene intensity.

We have observed that any weak point in the visualization pipeline limits its percep-

tual accuracy, as in system image quality. We have iteratively improved our approach

to ensure that visualizations are presented in as perceptually accurate a way as possible.

Our success with this goal and insight into the factors affecting it continue to improve

with ongoing experiments. We look forward to improvements in virtual reality and dis-

play technology that will improve luminance levels, dynamic range, and field of view.

All of these will likely enhance adaptation and presence, as well as potentially percep-

tual accuracy.
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